1,488 research outputs found

    A new world order: training clinicians for a new era in imaging

    Get PDF

    Advances in the neurophysiology of magnocellular neuroendocrine cells

    Get PDF
    © 2020 British Society for Neuroendocrinology Hypothalamic magnocellular neuroendocrine cells have unique electrical properties and a remarkable capacity for morphological and synaptic plasticity. Their large somatic size, their relatively uniform and dense clustering in the supraoptic and paraventricular nuclei, and their large axon terminals in the neurohypophysis make them an attractive target for direct electrophysiological interrogation. Here, we provide a brief review of significant recent findings in the neuroplasticity and neurophysiological properties of these neurones that were presented at the symposium “Electrophysiology of Magnocellular Neurons” during the 13th World Congress on Neurohypophysial Hormones in Ein Gedi, Israel in April 2019. Magnocellular vasopressin (VP) neurones respond directly to hypertonic stimulation with membrane depolarisation, which is triggered by cell shrinkage-induced opening of an N-terminal-truncated variant of transient receptor potential vanilloid type-1 (TRPV1) channels. New findings indicate that this mechanotransduction depends on actin and microtubule cytoskeletal networks, and that direct coupling of the TRPV1 channels to microtubules is responsible for mechanical gating of the channels. Vasopressin neurones also respond to osmostimulation by activation of epithelial Na+ channels (ENaC). It was shown recently that changes in ENaC activity modulate magnocellular neurone basal firing by generating tonic changes in membrane potential. Both oxytocin and VP neurones also undergo robust excitatory synapse plasticity during chronic osmotic stimulation. Recent findings indicate that new glutamate synapses induced during chronic salt loading express highly labile Ca2+-permeable GluA1 receptors requiring continuous dendritic protein synthesis for synapse maintenance. Finally, recordings from the uniquely tractable neurohypophysial terminals recently revealed an unexpected property of activity-dependent neuropeptide release. A significant fraction of the voltage-dependent neurohypophysial neurosecretion was found to be independent of Ca2+ influx through voltage-gated Ca2+ channels. Together, these findings provide a snapshot of significant new advances in the electrophysiological signalling mechanisms and neuroplasticity of the hypothalamic-neurohypophysial system, a system that continues to make important contributions to the field of neurophysiology

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon

    In Vivo Measurement of Hippocampal GABAA/cBZR Density with [18F]-Flumazenil PET for the Study of Disease Progression in an Animal Model of Temporal Lobe Epilepsy

    Get PDF
    PURPOSE: Imbalance of inhibitory GABAergic neurotransmission has been proposed to play a role in the pathogenesis of temporal lobe epilepsy (TLE). This study aimed to investigate whether [(18)F]-flumazenil ([(18)F]-FMZ) PET could be used to non-invasively characterise GABA(A)/central benzodiazepine receptor (GABA(A)/cBZR) density and affinity in vivo in the post-kainic acid status epilepticus (SE) model of TLE. METHODS: Dynamic [(18)F]-FMZ -PET scans using a multi-injection protocol were acquired in four male wistar rats for validation of the partial saturation model (PSM). SE was induced in eight male Wistar rats (10 weeks of age) by i.p. injection of kainic acid (7.5–25 mg/kg), while control rats (n = 7) received saline injections. Five weeks post-SE, an anatomic MRI scan was acquired and the following week an [(18)F]-FMZ PET scan (3.6–4.6 nmol). The PET data was co-registered to the MRI and regions of interest drawn on the MRI for selected structures. A PSM was used to derive receptor density and apparent affinity from the [(18)F]-FMZ PET data. KEY FINDINGS: The PSM was found to adequately model [(18)F]-FMZ binding in vivo. There was a significant decrease in hippocampal receptor density in the SE group (p<0.01), accompanied by an increase in apparent affinity (p<0.05) compared to controls. No change in cortical receptor binding was observed. Hippocampal volume reduction and cell loss was only seen in a subset of animals. Histological assessment of hippocampal cell loss was significantly correlated with hippocampal volume measured by MRI (p<0.05), but did not correlate with [(18)F]-FMZ binding. SIGNIFICANCE: Alterations to hippocampal GABA(A)/cBZR density and affinity in the post-kainic acid SE model of TLE are detectable in vivo with [(18)F]-FMZ PET and a PSM. These changes are independent from hippocampal cell and volume loss. [(18)F]-FMZ PET is useful for investigating the role that changes GABA(A)/cBZR density and binding affinity play in the pathogenesis of TLE

    Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency

    Get PDF
    Ion acceleration driven by the interaction of an ultraintense (2x10^20 Wcm^-2) laser pulse with an ultrathin (40nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell (PIC) simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge prole of the laser pulse

    Etiology of Childhood Bacteremia and Timely Antibiotics Administration in the Emergency Department

    Get PDF
    BACKGROUND: Bacteremia is now an uncommon presentation to the children’s emergency department (ED) but is associated with significant morbidity and mortality. Its evolving etiology may affect the ability of clinicians to initiate timely, appropriate antimicrobial therapy. METHODS: A retrospective time series analysis of bacteremia was conducted in the Alder Hey Children’s Hospital ED between 2001 and 2011. Data on significant comorbidities, time to empirical therapy, and antibiotic susceptibility were recorded. RESULTS: A total of 575 clinical episodes were identified, and Streptococcus pneumoniae (n = 109), Neisseria meningitidis (n = 96), and Staphylococcus aureus (n = 89) were commonly isolated. The rate of bacteremia was 1.42 per 1000 ED attendances (95% confidence interval: 1.31–1.53). There was an annual reduction of 10.6% (6.6%–14.5%) in vaccine-preventable infections, and an annual increase of 6.7% (1.2%–12.5%) in Gram-negative infections. The pneumococcal conjugate vaccine was associated with a 49% (32%–74%) reduction in pneumococcal bacteremia. The rate of health care–associated bacteremia increased from 0.17 to 0.43 per 1000 ED attendances (P = .002). Susceptibility to empirical antibiotics was reduced (96.3%–82.6%; P < .001). Health care–associated bacteremia was associated with an increased length of stay of 3.9 days (95% confidence interval: 2.3–5.8). Median time to antibiotics was 184 minutes (interquartile range: 63–331) and 57 (interquartile range: 27–97) minutes longer in Gram-negative bacteremia than in vaccine-preventable bacteremia. CONCLUSIONS: Changes in the etiology of pediatric bacteremia have implications for prompt, appropriate empirical treatment. Increasingly, pediatric bacteremia in the ED is health care associated, which increases length of inpatient stay. Prompt, effective antimicrobial administration requires new tools to improve recognition, in addition to continued etiological surveillance

    Complex regional pain syndrome type I: efficacy of stellate ganglion blockade

    Get PDF
    PubMed ID: 19888550Background: This study was performed to evaluate the treatment of complex regional pain syndrome (CRPS) type I with stellate ganglion blockade. Materials and methods: We performed three blockades at weekly intervals in 22 patients with CRPS type I in one hand. The patients were divided into two groups depending on the time between symptom onset and treatment initiation. Group 1and 2 patients had short and long symptom-onset-to-treatment intervals, respectively. Pain intensity, using a visual analog score (VAS), and range of motion (ROM) for the wrist joint were assessed before and 2 weeks after treatment and were compared using nonparametric statistical analysis. Results: Treatment produced a statistically significant difference in wrist ROM for all patients (P < 0.001). VAS values showed an overall decrease from 8 ± 1 to 1 ± 1 following treatment, and there was a significant difference in VAS value between groups 1 and 2 (P < 0.05). Conclusions: We concluded that stellate ganglion blockade successfully decreased VAS and increased ROM of wrist joints in patients with CRPS type I. Further, the duration between symptom onset and therapy initiation was a major factor affecting blockade success. © 2009 Springer-Verlag

    Cerebrospinal Fluid Biomarkers are Differentially Related to Structural and Functional Changes in Dementia of the Alzheimer's Type

    Get PDF
    The two cardinal pathologies of Alzheimer’s disease (AD) develop according to distinct anatomical trajectories. Cerebral tau-related pathology first accumulates in the mesial temporal region, while amyloid-related pathology first appears in neocortex. The eventual distributions of these pathologies reflect their anatomical origins. An implication is that the cardinal pathologies might exert preferential effects on the structurofunctional brain changes observed in AD. We investigated this hypothesis in 39 patients with dementia of the Alzheimer’s type. Interrelationships were analyzed between cerebrospinal fluid biomarkers of the cardinal pathologies, volumetric brain changes using magnetic resonance imaging, and brain metabolism using [18F]-FDG-PET. Amyloid-related pathology was preferentially associated with structurofunctional changes in the precuneus and lateral temporal regions. Tau-related pathology was not associated with changes in these regions. These findings support the hypothesis that tau- and amyloid-pathology exert differential effects on structurofunctional changes in the AD brain. These findings have implications for future therapeutic trials and hint at a more complex relationship between the cardinal pathologies and disruption of brain networks
    corecore